PHYSICAL REVIEW E 72, 016120 (2005)

Riemannian geometry of thermodynamics and systems with repulsive power-law interactions
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A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is
proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of iden-
tical classical point particles interacting with each other via a power-law potential energy yr~¢. Such systems
are useful in modeling melting transitions. The limit a— % corresponds to the hard sphere gas. A thermody-
namic limit exists only for short-range (a>3) and repulsive (y>0) interactions. The geometric theory solu-
tions for given a>3, y>0, and any constant temperature 7 have the following properties: (1) the thermody-
namics follows from a single function b(pT*¢), where p is the density; (2) all solutions are equivalent up to
a single scaling constant for pT~>¢, related to y via the virial theorem; (3) at low density, solutions correspond
to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as
expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 3<a<3.7913,
the solution goes from the low to the expected high density limit smoothly; (6) for a>3.7913 a phase
transition is required to go between these regimes; (7) for any a>3 we may include a first-order phase
transition, which is expected from computer simulations; and (8) if a— oo, the density approaches a finite value

as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.
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I. INTRODUCTION

The basic laws of equilibrium thermodynamics have long
achieved a venerable place in physics as being complete [1].
However, when one adds thermodynamic fluctuations to the
picture, things are not so clear. It has been suggested [2,3]
that fundamentally new results come from a Riemannian ge-
ometry with a metric based on thermodynamic fluctuation
probabilities. The associated Riemannian curvature scalar is
a measure of interaction strength, and yields fundamental
information about thermodynamic systems through a postu-
late: the curvature is inversely proportional to the inverse of
the free energy density [3,4].

This postulate may be expressed as a partial differential
equation for the free energy density. Although this equation
stands ready to deal with great complexity, the solution pro-
cess is considerably simplified if we can find a method of
reduction to an ordinary differential equation. In the applica-
tion to critical phenomena, this was done by the substitution
of a generalized homogeneous function [4]. Here, the substi-
tution is inspired by the integral equations of state and the
assumption of power-law inter-atomic interaction potential
energies. A special case of this solution method, the self-
gravitating gas, was considered previously [5], and this paper
represents a generalization of that effort. Here, however, |
emphasize repulsive interactions, which offer a regime where
we may compare the geometric theory with statistical me-
chanics.

The basic philosophy of the geometric theory is the cal-
culation of thermodynamic equations of state without the
explicit use of underlying microscopic models. There is
nothing resembling the summation over microstates to find a
partition function. A hope is that the geometric theory can
reveal universal properties, independent of microscopic de-
tails and common to broad classes of systems. In addition,
the geometric theory yields results even in cases where the
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sum for the partition function for corresponding cases is
known to diverge, such as the self-gravitating gas. Figure 1
contrasts the philosophies of the geometric theory and statis-
tical mechanics.

Since the subject of thermodynamic curvature was re-
viewed [3], a number of papers on this topic have been pub-
lished. Here is a representative sample: Refs. [6-15].

This paper is laid out as follows. First, I summarize the
Riemannian geometric theory of thermodynamics (hereafter
referred to as the geometric theory). Second, I present the
statistical mechanics of the power-law interacting gas and
show how it simplifies the geometric theory. Third, I present
general theorems for this problem. Fourth, I discuss methods
of numerical computation. Fifth, I discuss how the geometric
theory can accommodate first-order phase transitions. Sixth,
I discuss several special cases of this theory for repulsive
interactions. Finally, I make some brief remarks about attrac-
tive interactions.
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FIG. 1. Contrasting philosophies of statistical mechanics and the
geometric theory. For microscopic models we substitute boundary
conditions and/or simplifying mathematical forms for the equations
of state. (These may, of course, reflect microscopic conditions.)
Instead of computing a partition function, we solve a differential
equation for the thermodynamics.
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II. GEOMETRIC THEORY

Although the geometric theory is more general [3,16], T
restrict discussion to a three-dimensional pure fluid in tem-
perature, density coordinates. The thermodynamic notation
in this paper follows that of Ref. [3].

Consider an open subsystem Ay, with fixed volume V, of
an infinite pure fluid system Ay, Ay has fluctuating tempera-
ture and number density (7', p). Ay, has volume V; (tending
to infinity) and fixed temperature and number density
(T, po)- The classical thermodynamic fluctuation theory [17]
asserts that the probability of finding the thermodynamic
state of Ay in a small rectangle in thermodynamic state space
with bounding coordinates (7, p) and (T+dT,p+dp) is

Py(T,p)dT dp = Cexp<%>dmp, (1)
B
where S,,,,; is the entropy of AVo when its subsystem Ay is in
the state (T, p), kg is Boltzmann’s constant, and C is a nor-
malization factor.

The total entropy S,,,; is maximized in the equilibrium
state (T, p)=(Ty,py). Expanding S,,,, to second order about
this maximum yields the Gaussian approximation to the ther-
modynamic fluctuation theory:

PUT.p)dT dp= (%)exp(— SerA1y

-
+ gpp(Ap)z]) Vg dT dp, (2)
where AT=T-T,, Ap=p—py,
1 ou
=— =], 3
8rr kBTZV( &T)p (3)
1 &p)
- ), 4
See kBTP( ap/r @
and
8= 8118pp- (5)

Here, U is the internal energy and p is the pressure. This
Gaussian approximation is valid for large V [18].
The quadratic form

(AD? = gr7(AT)? + g,,(Ap)? (6)

constitutes a positive-definite Riemannian metric on the two-
dimensional thermodynamic state space of points with coor-
dinates (7', p) [2,3]. Physically, the interpretation for distance
between two thermodynamic states is clear from Eq. (2): the
less probable a fluctuation between two states, the further
apart they are. The thermodynamic metric serves as the
foundation for a thermodynamic fluctuation theory which ex-
tends the classical thermodynamic fluctuation theory Eq. (1)
beyond the Gaussian approximation in a covariant and con-
sistent way [19-21]. T add that such probability metrics are
familiar in the broader context of information theory
[3,22-24].
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Central to any Riemannian geometry is the Riemannian
curvature scalar R, which follows naturally from the metric
[25]. The value of R for any particular thermodynamic state
is independent of which coordinate system is used to label
the states [26]. Hence, R is a property of the “true” physics
and lays claim on these grounds alone as being an important
object of study.

Ruppeiner [2] found that R is zero for all states of the pure
ideal gas, suggesting that R is a measure of interactions. R
was also found to have units of volume (e.g., meters cubed)
and to diverge to infinity at the critical point of a pure fluid in
the same way as the correlation volume. It was naturally
hypothesized that [2]

R= K2§37 (7)

where ¢ is the correlation length and «, is a dimensionless
constant with absolute value of order unity. This idea has
been verified in a number of cases with known thermody-
namics and correlation length [3] and has been amplified by
the finding that R marks the volume where the Gaussian
thermodynamic fluctuation theory Eq. (2) breaks down re-
gardless of coordinates [20].

To make the connection between the correlation volume
and the free energy, invoke the hypothesis of hyperscaling in
the theory of critical phenomena [27]. It asserts that near the
critical point the “singular part” of the free energy per vol-
ume

p u pp
=—=§5—-—+— 8
=7 P (8)
is inversely proportional to the correlation volume:
Kik
(d))singular == ;33 > (9)

where «; is a dimensionless constant with absolute value of
order unity, S is the entropy, s=S/V is the entropy per vol-
ume, u=U/V is the internal energy per volume, and w is the
chemical potential.

Combining Egs. (7) and (9) yields

k
R=—K<_B) , (10)
¢ singular
where
K= K{Kj. (11)

In words, this geometric equation states that the curvature is
inversely proportional to the inverse of the free energy den-
sity. The somewhat loose argument presented for it here as-
sumes that we are near the pure fluid critical point where &
is large. However, the viewpoint in this paper is to regard Eq.
(10) as a general postulate in its own right, to be explored in
as many situations as possible. Particularly interesting in this
regard is the demonstration by Kaviani and Dalafi-Rezaie
[13] that the free energy density of the classical ideal para-
magnetic gas, free of any interactions, satisfies the geometric
equation (10) exactly.

Somewhat vague at this point is precisely what is meant
by the “singular part” of the free energy. Clearly, it is to be
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formed from the free energy ¢ or its inverse by subtracting
the portion not connected with organized fluctuations, curva-
ture, or interactions. While this may sound arbitrary, in prac-
tice assumptions about analyticity usually leave us little
choice about the appropriate subtraction. Likewise, analytic-
ity assumptions yield the value for «.

The equation for the curvature scalar in (7, p) coordinates

is [28]
1| ad/(109 af 14
=¢{—<—r—gﬂe)+—(?g—”)} (12)

Since, by the rules of thermodynamics, all thermodynamic
quantities may be expressed in terms of ¢ and its derivatives,
the geometric equation (10) may be expressed as a partial
differential equation for ¢. We will see below how this equa-
tion manifests itself in the case of power-law interactions.

III. POWER-LAW INTERACTIONS

Near the critical point, a generalized homogenous func-
tion was used to simplify the solution process [4,16]. Here, I
start with the integral equations of state in the context of
power-law interactions. Although the statistical mechanical
calculation stalls in the attempt to compute the partition
function, it does produce a formalism which, with the geo-
metric theory, results in an ordinary differential equation
yielding the full thermodynamics.

A. Statistical mechanics

Define the radial distribution function g(r, T, p) as follows
[29,30]. Consider an atom at the origin and ask for the aver-
age number of atoms contained in a thin spherical shell cen-
tered at the origin, with inner radius r and outer radius
r+dr. By definition, this is

pg(r,T,p)4mr* dr. (13)

At large r, atoms are randomly arranged with respect to the
origin and g(r,T,p) is unity. At smaller r interactions play a
role and g(r,T,p) generally deviates from unity. By virtue of
its definition, g(r,T,p) is never negative.

Elementary arguments in statistical mechanics [29] show
that the internal energy may be written as

U 3 ”
==+ p f u(r)g(r,T,p)4mr? dr, (14)
where u(r) is the potential energy between two atoms sepa-
rated by a distance r and N=pV is the particle number. Like-
wise, the pressure is

pV P
NkyT 6kyT

“ du(r
f 7 ( )g(r,T,p)47'rr2 dr. (15)
r=0 dr
These two integral equations of state are generally valid
for any interacting monatomic pure gas, so long as the inte-
grals converge. However, their practical use is limited be-
cause g(r,T,p) is not, a priori, known. My method around

PHYSICAL REVIEW E 72, 016120 (2005)

this difficulty is to consider the case where u(r) satisfies the
differential equation

r =—au(r), (16)

where « is the exponent in the power-law solution. Here, the
integrals in Egs. (14) and (15) become proportional to one
another, and, as I will demonstrate in the next subsection, the
geometric theory will allow us to write them as the solution
to an ordinary differential equation.

The unique solution to Eq. (16) is a power-law interaction
potential energy:

u(r)=l (17)

re’

where 7y is a constant giving the strength of the interaction.
This form allows us to write Egs. (14) and (15) as

3
= ENkBT[l —ab(T,p)] (18)
and
p:pkBT[l_b(T’P)], (19)
where
b(T,p) =~ 6,;T7afr_0 rg(r,T.p)4mr* dr  (20)
and
2
a=—. (21)
o

I restrict attention to a=0 since interactions with the abso-
lute value of the potential energy growing with distance are
unphysical.

For attractive interactions (y<<0) convergence at the up-
per integral limit in Eq. (20) certainly requires a>3. How-
ever, with a>3, the integral diverges at the lower limit,
since attractive interactions would lead one to expect
g(r,T,p) to exceed unity for small r. Statistical mechanics
offers then no case where the integral equations of state con-
verge for y<<0. Interesting alternative thermodynamics,
without traditional thermodynamic limits, have been reported
[32,33]. For the viewpoint in this paper, see Sec. VIIIL.

For repulsive interactions (y>0), convergence at the up-
per integral limit in Eq. (20) requires again «>3. But for
a>3 we are saved from the divergence at the lower limit by
a vanishing g(r,T,p). This is known indirectly from rigorous
statistical mechanics [34] which indicates that a thermody-
namic limit will exist for continuum systems in three dimen-
sions provided that the potential is both “tempered” and
“stable.” For repulsive interactions with >3 the potential
satisfies both these conditions. This is significant, since it
offers a situation where the geometric theory may be directly
compared with statistical mechanics.

It is straightforward to show that the Maxwell relation
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7,77 @
Tl yy \V/ gy
is satisfied if and only if
b(T,p) =b(x), (23)
where
p
x=bn. (24)

This leads, finally, to
3
U= ENkBTfl —ab(x)] (25)

and

p = pkgT[1 - b(x)]. (26)

My notation is based on that in applications to self-
gravitating systems [5,35]. These expressions lead to great
simplicity, since a single isotherm, isochore, or isobar is suf-
ficient to determine the entire phase diagram. Since it makes
little difference, I will usually work with isotherms.
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Statistical mechanics takes us little further at this point,
since we cannot do the integral for b(x). But, in the next
subsection we will see how the geometric theory allows us to
express b(x) as the solution to a differential equation.

B. Geometric theory

I now express the geometric equation as an ordinary dif-
ferential equation. Substituting Egs. (25) and (26) into Egs.
(3) and (4) for the metric elements yields

grr= %[2 — 2ab(x) + 3a’xb' (x)] (27)

and

_[1=b(x) —xb"(x)]
= . .

Substituting these equations into Eq. (12) for the curvature
yields

8pp (28)

RT3“/2 = I’l]/dl N (29)

where

n;=4b'(x) — 6ab’ (x) — 3a’b' (x) - 2ab(x)b’' (x) + 9a’b(x)b’ (x) + 3a’b(x)b' (x) — 2a*b(x)*b’ (x) — 3a’b(x)?b" (x) + 2axb’ (x)?
+7a%xb" (x)* = 9a3xb" (x)* + 242" (x)? + 32 (%) + 2xb"(x) = daxb"(x) = 3axb" (x) + Ta’xb(x)b" (x) + 3a°xb(x)b" (x)
—2a’xb(x)*b"(x) = 3a’xb(x)?b" (x) + 2axb’' (x)b"(x) + 6a*x*b' (x)b"(x) — 3a>x*b" (x)b" (x) — 2a*x*b(x)b' (x)b" (x)

—3a’x*b(x)b" (x)b" (x)

and

d;=[-1+b(x)+xb"(x)[2 - 2ab(x) + 3a’xb’ (x)*.
(1)
Remarkably, terms in the third derivatives of b(x) and terms
nonlinear in b”(x) cancel in the calculation.

It is now possible to determine the “singular part” of the
free energy. Assume that b(x) is analytic at x=0 and expand

o

b(x) =2, bx' =bx + byx® + byx + O(x"), (32)
i=1

where the b;’s are constant coefficients. The leading coeffi-
cient by=0 since Egs. (25) and (26) must reduce to the ideal
gas expression as x— 0. Substituting this series into Eq. (29)
for the curvature yields the series

1 1
RT32 = _ 4_1(_ 4+ 6a+3a)b, + Z[(16 - 16a - 20a* + 6a°

+9a*)b? — 4(= 3 + 5a + 3a*)by Jx + O(x?). (33)
We likewise find with Eq. (26) that

(30)

]%TTWZ = )l—c +by+ (b +by)x + O(x?). (34)

The geometric equation (10) would have us set these two
series proportional to each other. But this fails because of the
1/x term in Eq. (34). This term reflects the ideal gas contri-
bution to the inverse of the free energy and has nothing to do
with either interactions or curvature. Hence, I subtract it as
the “nonsingular” part and set

) e
¢ singular p P

The corresponding series is

¢

Substituting the series Egs. (33) and (36) into Eq. (10)
yields

k
(—B> T2 = b, + (b* + by)x + O(x). (36)
singular
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1
K= Z(—4+6a+3a2). (37)

It also shows that b, is a free constant in the theory from
which all of the other b,’s follow uniquely by a series solu-
tion method. Clearly, k=0 for a=-2.5275 and 0.5275. The
unphysical negative value is not considered here, but the
positive value will be discussed in Sec. VIII.

The units of b; are such as to make the product bx di-
mensionless. From Eq. (20), systems with attractive interac-
tions (y<<0 and a>0) are expected to have b(x) >0 for all
x, and hence b; > 0. For systems with repulsive interactions
(y>0 and a>0), we expect the opposite sign.

I conclude this subsection by displaying the geometric
equation in the form solved here. By substituting Eqgs. (29)
and (35) into Eq. (10) [p is evaluated with Eq. (26)], chang-
ing variables, and rearranging, the geometric equation be-
comes two coupled first-order differential equations:

db

Lo (38)

and
% =h(b,w), (39)

where

t=1n(|by|x) (40)

and
h(b,w) = n,ld,, (41)

with
ny=—(=16b+ - +27aw?) (42)

a polynomial of 75 terms, each a product of powers of a, b,
and w, and

dy=4(= 1 +b) (=2 +4a+3a* - 7a’b - 3a°b + 2a°b* + 3a°h?
—2aw — 64w + 3w + 2a°bw + 3a°bw). (43)

The geometric equation in this form becomes the basis for
the theorems and numerical solutions below.

IV. THEOREMS

In this section, I present several theorems for statistical
mechanics and the geometric theory.

A. Statistical mechanics

To simplify the language, introduce the phrase “scaling
transformation” for the multiplication by factors,

(r,T.p,y) — (\"*r,eT,\"*p,(N€) ), (44)

where \ and € are dimensionless constants, and for calculat-
ing with the rescaled values of (r,T,p,y). It is straightfor-
ward to prove [36] the following.
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Theorem 1: Under a scaling transformation, the radial
distribution function is unchanged,

gO\Yer e N7 %) = g(r,T,p). (45)

Theorem 1 and Eq. (20) allow an immediate proof of the
following.

Theorem 2: Under a scaling transformation, the function
b(T,p) is unchanged:

b(eT \%p) = b(T, p). (46)

From this follows our main scaling theorem,
Theorem 3: Under a scaling transformation, the function
b(x) is unchanged:

b((Ne) V%) = b(x). (47)

For a given «, the thermodynamics is thus given by a
single function b(x) and a single scaling factor reflecting the
interaction strength.

The next statistical mechanical theorem concerns high-
density states of systems with repulsive interactions, y>0.
As we compress at fixed 7, the atoms are intuitively expected
to lock increasingly into place with one another in a lattice
where most of the energy is potential, and with very little
vibration. This has been verified by computer simulations
[37], where the lattice was found to be fcc [38]. A quantum
mechanical example is the Wigner lattice [39].

The assumption of a lattice limit at fixed 7, y>0, and
x— leads to the following.

Theorem 4: In the lattice limit,

G >x2/3a’ (48)

b(x) — - 7( 3o

where

N [e3
G=3 (@) (49)

i=2 \Ti

is a structure constant independent of p and T, ry=p~"3, and

r; is the distance between the i'th atom and the origin, as-
sumed to correspond to the position of the first atom.

For proof, note that as the density increases, the potential
energy grows without limit, while the kinetic energy stays
fixed at %NkBT. By Eq. (25) then, —b(x) must get large, and
a straightforward calculation of the potential energy now es-
tablishes the theorem. With this theorem we see that in the
lattice limit, the pressure depends only on the density:

p~ p(a+3)/3. (50)

From Theorem 4 and Eq. (28), we obtain the following.
Theorem 5: In the lattice limit,

G 3a+2
2/3(1. 51
pgpp—>7(3k3a>< 34 )x (51)

This is positive for all a>0, as it must be, and approaches
infinity as x — e, corresponding to an incompressible limit-
ing lattice.

The next theorem assumes the Dulong-Petit law in the
lattice limit,
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ou
— | — 3Nkg. (52)
ar/,
Equation (3) leads with this to the next theorem.
Theorem 6: In the lattice limit,
72
;g T— 3. (53)

To compare the geometric theory with statistical mechan-
ics in Sec. VII, we must connect the free thermodynamic
constant b; with the interatomic potential strength y. The
low-density virial expansion [29]

p
pkBT

=1+ B,p+B;p*+ 0(p?), (54)

where the B,’s are the temperature dependent virial coeffi-
cients, lets us do this. Statistical mechanics [29] yields

B2=—%fco [exp(— %) - 1}47172 dr. (55)

Comparing with Eq. (32) from the thermodynamic method
leads to the following theorem.
Theorem 7:

2 3a [*
b =- —W(l> f [1-exp(-2)] %9 dz. (56)
o kB 7=0
This integral converges if and only if o> 3.

B. Geometric theory

The pair of differential equations (38) and (39) are au-
tonomous [40] since the right-hand sides do not depend ex-
plicitly on #. They are thus invariant with respect to an addi-
tive constant for ¢, or, equivalently, a multiplicative factor for
x:x— A\x. Furthermore, the solution follows uniquely on giv-
ing two constants by and b;. Since by=0 is common to all
our solutions, at least for small x, b; (proportional to \) is the
only free factor, proving the following.

Theorem 1': If b(x) is a solution to the geometric equa-
tion, then so is b(Ax), and all solutions starting at the origin
are given by a single function b(x) and a single scaling fac-
tor, proportional to b.

This scaling and universality of solutions is consistent
with Theorem 3.

The remaining theorems concern lattice limiting solu-
tions.

Theorem 2': For any a different from zero, and for any
constant k and all x, the simple expression

1
b(x) = kx*3¢ 4+ . (57)

is an exact solution to Egs. (38) and (39).

The proof of this remarkable theorem is by direct calcu-
lation.

This expression yields an exact relation between b and w:
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(58)

independent of k.

The form in Theorem 2’ has the same limiting x depen-
dence as that in Theorem 4. Despite this, however, the sig-
nificance of Theorem 2’ is not transparent. I offer no proof
that solutions starting at the origin must approach this form.
But, in Sec. VII, I show numerically that a significant class
of solutions does approach this form asymptotically, estab-
lishing a limiting correspondence with statistical mechanics.

Here are some observations about the metric elements in
the lattice limit. The form in Theorem 2" implies pg,, has the
same x dependence as that in Theorem 5. But, Theorem 2’
has gy7=0 for all x, not what we want physically from the
Dulong-Petit Theorem 6. Perhaps a more accurate limiting
form for b(x) remains to be found.

Finally, Egs. (10), (26), and (35) yield the last theorem.

Theorem 3': For any function b(x) with |b(x)|—, the
curvature goes to

K
R— —. (59)

p
This lattice limiting form has the curvature approaching the
order of the volume per atom. Small curvature at high den-
sity is similar to the result found earlier in the Takahashi gas

[31].

V. NUMERICAL SOLUTION METHODS

The study of specific cases requires full numerical solu-
tions of the geometric equation. First, note that since the
differential equations (38) and (39) are autonomous, the so-
lution curves in (b,w) space are independent of |b,|. Math-
ematically, a solution curve may be started from any nonsin-
gular point (b,w). But, I start all our solution curves from the
ideal gas point (b,w)=(0,0) with x=0, reasoning that if
there are any stable physical states, this would be one.

Solution curves could conceivably encounter a variety of
singular points. At singular points either both sides of Eqgs.
(38) and (39) are zero, or h(b,w) diverges. Singular points
come in five types: (1) points off the b axis where the de-
nominator of A(b,w) is zero, but its numerator is not zero;
(2) points off the b axis where the numerator and the de-
nominator of i(b,w) are both zero; (3) points on the b axis
where the numerator of 4(b,w) is zero, but its denominator is
not zero; (4) points on the b axis where the denominator of
h(b,w) is zero, but its numerator is not zero, and (5) points
on the b axis where both the numerator and the denominator
of h(b,w) are zero.

Generally, type 1 singular points are located along curves
in (b,w) space. The other types are isolated points. For type
2 singular points, we typically get cancelling zeros along
approaching solution curves, which allows us to, in effect,
treat 2(b,w) as analytic there. Such “crossing points” were
important in Ref. [4], but we will not see an example here.

Type 1 singular curves are readily classified. From Eq.
(43), we see that d,, the denominator of h(b,w), is zero for
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FIG. 2. Type 1 singular curve where d,=0 [in Eq. (43)] for a
=3/5. This figure is representative of other values of a and shows
the curve going to = in the second and fourth quadrants with slope
—1. It also reaches +% at b.=1.9825. Also shown is the solution
curve for both positive and negative b;. The curve goes to infinity
analytically in the third quadrant in accord with the x dependence in
Theorem 4. It encounters the type 1 singular curve in the first
quadrant.

all a if b=1. But, a zero with b>0 holds no interest for
repulsive interactions, and we consider it no further. Other-
wise, for every a and b, there is exactly one value of w
corresponding to d,=0, and for every a and w, there are
either two or no real values of b corresponding to d,=0.
Type 1 singular curves go asymptotical to infinity in the sec-
ond and fourth quadrants since for any nonzero a, w/b—
-1 as b— .

For every nonzero a (except a=1), there is exactly one
finite critical value b=b. where w— + on the type 1 sin-
gular curve:

_2+6a—3a2

" 2a+3d (60)
This value separates the type 1 singular curve into two
branches. As a—0, b.— %, and as a— %, b,— —1. Since for
a=2.2910, b.=0, all the type 1 singular curves with 0<a
<<2/3 correspond to the left branch. Figure 2 shows these
branches for a=3/5, where b,=1.9825. The qualitative
shape of the type 1 singular curves is the same for all a>0.
From Eq. (41), we can show that the ideal gas point (0,0)
is a type 3 singular point for all values of a except a
=-1.7208 and 0.3874, which are type 5’s. (The negative
value does not concern us here, but the positive value comes
up again in Sec. VI.) The standard approach to a type 3
singular point starts by linearizing the differential equations
(38) and (39) about that point. Very near the origin

db
—= 61
dt v (61)

and
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d—v:=a1b+a2w, (62)
where a; and a, are constants:
-4+ 6a+3a’
“ v darad (©9
and
e (04
Trying a solution of the form
b=reM (65)
and
w=seM, (66)

where \, r, and s are constants, leads to a characteristic equa-
tion for \:

N —a\N—a,; =0, (67)

as a necessary condition for nonzero solutions for » and s.
The roots are

4—6a-3d>
A=1 or A\=—7—"——. (68)
-2+4a+3a
The former possibility yields
b(x)=rx, (69)

consistent with the first term in the series Eq. (32).

Since (0, 0) is a singular point, I start numerical solutions
at slightly removed from it using the series Eq. (32) to gen-
erate initial conditions. Solution curves with attractive inter-
actions (b;>0) move into the first quadrant and those with
repulsive interactions (b, <0) into the third quadrant. With
increasing #, solution curves propagate until they either drift
off to infinity or encounter some singular point or curve.

VI. FIRST-ORDER PHASE TRANSITIONS

Repulsive power-law interacting systems are known to
offer a simple model for melting/freezing transitions [41].
Computer simulations [37] have revealed such phase transi-
tions for =4, 6, 9, and 12. Consider compressing a system
at constant 7 starting at the ideal gas (0, 0), as in Fig. 3.
Initially, the fluid curve is traversed. But, in computer studies
[37], this curve eventually terminates at some state A, and
there is a jump to a state B which shows solid fcc ordering.
At higher densities, this solid curve is expected to increas-
ingly take on the limiting lattice functional form in Eq. (48).

For a first-order phase transition we require AT=0 and
Ap=0, but discontinuous energy and entropy, corresponding
to a latent heat:

TAS =AU + pAV. (70)

Here AS=S3z-S,, etc., where the subscripts refer to states A
and B. The conditions AT=0 and Ap=0 yield, with Eq. (26),

016120-7



GEORGE RUPPEINER

N
>

fluid curV\

A

solid curve

FIG. 3. Fluid and solid curves in (b,w) space. The fluid curve
starts at the ideal gas state (0,0). The solid curve is picked to ap-
proach the asymptotic lattice state Eq. (48) at increasing density and
constant 7. Computer simulations reveal that as we compress the
fluid, the Gibbs free energy will eventually lower itself by jumping
from a fluid state A to a solid state B.

xa(1=by) =xp(1 - bp). (71)

If we know b(x) for both fluid and solid curves, then this
constant pressure relation yields xz from x,. It is expected
that —byx,, —bxp, by, and by depend only on the exponent «,
and not on the interaction strength y [37].

This freezing transition results from the atoms abruptly
lowering their Gibbs free energy by arranging themselves
into a more ordered structure. Since the geometric theory
knows nothing, a priori, about solid structures, it is unlikely
to predict such a phase transition by itself. But, we may
easily include one. Start with fluid and solid curves solving
the geometric equation. These should go to the appropriate
low and high density limits. Then pick a transition point
(x4,b4) on the fluid curve. The constant pressure relation
then gives (xgz,bp), and the full thermodynamics is deter-
mined.

Since the entropies of both the fluid and the solid curves
contain an undetermined constant, which the geometric
theory does not relate to each other, the state A cannot be
determined from the geometric theory alone. There is noth-
ing like a Maxwell equal area construction because there is
generally no solution curve (however unphysical) connecting
the points A and B. Nevertheless, the geometric theory does
allow us to include a first-order phase transition, if it is
needed.

VII. EXAMPLES

In this section I look at specific cases with various values
of a, all having repulsive interactions, b;<0. I summarize
the previous statistical mechanical findings regarding ther-
modynamic limits in Fig. 4. Repulsive interactions offer a
regime where the thermodynamic limit exists: 0<<a<<2/3.
With no loss of generality, set kz=7y=1. In these units, both
b, and x are dimensionless.

A. Repulsive potential energy u(r)=yr~13

Here, a=3/5 and «=17/100. This a value falls into the
regime labeled “convergent, k>0" in Fig. 4, where all solu-
tions I tried drift off analytically to infinity in the third quad-
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. convergent, convergent,
unphysical | «<0 0

77 77 /I\\\\\\\\\\\\\\T//IIII N~~~ <
0 213
0.5275

unconvergent
| a

FIG. 4. The statistical mechanical regimes for various values of
a. Since no case with attractive interactions has a thermodynamic
limit, our terminology is directed at cases with repulsive interac-
tions. The “unphysical” regime a <0 corresponds to interaction po-
tentials growing with distance. The ‘“unconvergent” regime a
=2/3 has the integral in Eq. (20) diverging at the upper limit. The
“convergent” regime 0 <<a<<2/3 corresponds to a converging inte-
gral in Eq. (20). The value a=0.5275 reflects a changing sign of «,
where the thermodynamic solutions change character.

rant of (b,w) space with the same x dependence as that in
Theorem 4.

The origin (0, 0) for a=3/5 is a type 3 singularity. There
are no singularities in the third quadrant or on the negative b
axis. Figure 2 shows a full solution curve. Of particular in-
terest is the limiting case for ;<0 and large x. Figure 5
shows —b(x)/(=b,x)'%° as a function of —b,x. As x increases,
this quantity approaches a constant limit, as physically ex-
pected from Theorem 4.

To compare this constant with that in Theorem 4, we must
relate y and b; using the virial theorem expression in Theo-
rem 7. For kz=vy=1, Eq. (56) yields b;=-19.925. With the
limiting value in Fig. 5, we get

b(x) — — 11.00x'%°, (72)

In statistical mechanics, the numerical computation of the
structure constant G in Eq. (49) for the fcc lattice yields

b(x) — —22.87x'9°, (73)

The coefficients in the two approaches are within a factor
of about 2, reasonable agreement given that the thermody-
namics has nothing built into it about atomic structure.

N
T

b(x)(-b , x)'*

o 1 L L ' L ! (
103 102 104 10° 101 102 103 104 105

-b, x

FIG. 5. The function —b(x)/(=bx)'"° versus —b,x for a=3/5.
For large x, the curve approaches a constant value of 0.3958. The
approach to a constant limit for large x is physically expected from
Theorem 4.
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108 T T T T T T T

—— Geometric Theory
——— Statistical Mechanics Y

plp ky T)

10-1 il 1 il il 1 1l 1l
103 102 10 100 107 102 10% 104 108

FIG. 6. p/(pkgT) as a function of —bx for a=3/5. For small x
the curve has the constant ideal gas value 1. As x increases, there is
a transition to the diverging limiting form in Theorem 4. The dashed
line shows the limiting behavior from statistical mechanics in Eq.
(73) assuming an fcc lattice.

Figure 6 shows p/(pkgT) vs. —bx calculated with the
geometric theory. This curve relating dimensionless quanti-
ties is universal, independent of the value of |b,|. It starts
with the constant ideal gas value of 1, and, as the gas is
compressed, makes a transition to the x dependence in Theo-
rem 4. Also shown is the limiting form from statistical me-
chanics calculated with Eq. (73). The calculation of the full
curve with statistical mechanics is not feasible.

Turn now to universal curves for the metric elements.
Figure 7 shows T?g;;/p as a function of —b,x for the geo-
metric theory. At small x, the curve starts with its ideal gas
value 3/2, and then increases monotonically with x to a finite
limit 2.9412. Also shown is the Dulong-Petit limit of 3. Fig-
ure 8 shows pg,, as a function of —b,x for the geometric
theory. At small x, the curve starts with its ideal gas value 1,
and then increases without limit following the x dependence
in Theorem 5. The limiting statistical mechanical expression
Eq. (51) is also shown.

3.2 T T T T T T T T

28 |

286

24 -

TG, Ip

22 -

20 Geometric Theory

———Dulong-Petit

1.8

16

14 L L L ¢ « « 1 1
103 102 1071 100 101 102 102 104 10% 108

FIG. 7. T?g7r/p as a function of —b,x for the geometric theory
with a=3/5. As x increases, the curve rises from its ideal gas value
3/2 to a limiting value 2.9412.
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108 T T T

108 Geometric Theory E
3 ——— Statistical Mechanics 7

10 L s ! s ! L ! 1

103 102 104 100 101 102 103 104 10%

1

FIG. 8. pg,, as a function of —bx for the geometric theory with
a=3/5. As x increases, the curve rises monotonically from its ideal
gas value of 1 to infinity following the x dependence in Theorem 5,
which is also shown.

To assess other values of a in the “convergent, x>0
regime, I did numerical solutions of the geometric equation
for a number of a’s and found them all qualitatively
similar to the one for a=3/5 above. None of the solutions
have singularities either in the third quadrant or on the nega-
tive b axis. The solution curves all went analytically from (0,
0) to infinity in the third quadrant with the same x depen-
dence as that in Theorem 4. Figure 9 shows the limit of
—b(x)/(=byx)*3% as x— as a function of a. This limit de-
creases to zero as a decreases to 0.5275, where « becomes
zero as it changes sign. For smaller values of a, where « is
negative, the behavior of the solution curves is quite differ-
ent, as will be discussed in the next subsection.

Figure 10 shows the limiting values of T?g/p as x— o
computed numerically with the geometric equation for a
range of a values in the “convergent, k>0 regime. Values
are all positive, as required by thermodynamic stability, and
diverge as a decreases to 0.5275. For reasons not understood,

1.0 T T T T T T T

limiting -b(x)/(-b | %)%

02 I 1 L L I 1 L
0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.68 0.68

a

FIG. 9. Limiting values of —b(x)/(=b;x)*3® as x— as a func-
tion of a in the “convergent, k>0" regime for a number of a
values. The curve intersects the abscissa at the value of a=0.5275
where k=0.
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20 T T T T T T

® limiting T ’g/p
— 12x
——— Dulong-Petit

15

limiting T ? g, /p
3

0 L L L 1 1 1 1

0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68

a

FIG. 10. The limiting T%g;7/p as a function of a computed
numerically from the geometric theory. Values increase as a de-
creases to 0.5275 where « goes to zero. Also shown is the function
1/2k, which appears indistinguishable from the numerical values.

the limiting values are numerically indistinguishable from
1/2k, and Fig. 10 shows also this function.

I conclude this subsection with the first-order phase tran-
sition discussed in Sec. VI. We must first construct fluid and
solid curves (x,b(x)). The fluid curve is the solution to the
geometric equation starting at the origin. The solid curve
must be one going to the limit in Theorem 4, including the
constant multiplier. There are a number of such curves, and,
for simplicity, T pick the analytic curve Eq. (57), which
solves the geometric equation exactly for all a. The constant
k can be worked out from statistical mechanics using Eq.
(48).

With these curves known, the constant pressure relation
Eq. (71) yields xp for any x,. Figure 11 shows —bx; as a
function of —bx,. Clearly, for —b;x, <4.93 the solid curve
has a larger density than the fluid curve, as might be ex-
pected physically. Again, the geometric equation does not
require a phase transition for this value of a, but it certainly

10 T T T T T T T T T

g
e
byxp e
8+ b =b Ve 4
——— curve-b x;=-b x, 2

o
x
ol
-

0 . . . . . . , . .

0 1 2 3 4 5 6 7 8 s 10

FIG. 11. Corresponding densities x, and xp for the fluid and
solid curves with a=3/5. For —b;x,<4.93, the phase transition
corresponds to an increased density.
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FIG. 12. Solution curve starting at (0, 0) for a=1/2. On moving
into the third quadrant, it reaches a minimum where it crosses a
curve with i(b,w)=0. The solution curve then starts back up and
eventually encounters a curve of type 1 singularities in the second
quadrant where d,=0 in Eq. (43).

allows one. I am not aware of any computer data for this
value of a for comparison.

For the solid state curve Eq. (57), T?gy¢/p is everywhere
zero; see Sec. IV B. The curve is a straight line in (b,w)
space, by Eq. (58). For a=3/5, w=(10/9)b—-50/27. Solution
curves starting on the negative w axis at (0,w), with 0>w
>-50/27, go to the solid state limit as x — o with T2g;7/p
—2.9412, the same as for the fluid curve which starts at (0,
0). Solution curves below the analytic solid state curve have
T?grr/p<0 and are unphysical.

B. Repulsive potential energy u(r)=yr~*

Here, a=1/2 and xk=-1/16 is negative. This a falls into
the regime labeled “convergent, k<0” in Fig. 4. For a
=1/2 there are no singularities in the third quadrant or on the
negative b axis. Figure 12 shows the solution curve starting
at the origin and moving initially into the third quadrant. It
reaches a minimum on crossing a curve with 4(b,w)=0 and
moves back up into the second quadrant, where it encounters
a curve of type 1 singularities. The metric elements g+ and
8,p are both positive all along this curve, as required by
thermodynamic stability.

Obviously, this solution curve cannot go analytically to
infinity in the third quadrant in the way expected physically.
To make headway, a phase transition is required. Consider
solution curves not containing the origin. Figure 13 shows
several examples. Solution curves starting close to the origin
show the same qualitative behavior as the one in Fig. 12.
However, curves starting further away go to infinity in the
third quadrant with the same x dependence as in Theorem 4.
The straight line solution of Eq. (58) passes through (0,
—8/3) and is indicated with an arrow in Fig. 13. It marks the
boundary between curves having positive (above) and nega-
tive (below) grr. The solution curves “above” all eventually
terminate on the curve of type 1 singular points. The solution
curves “below,” have negative heat capacity and are hence
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50 1 . . .

~
[ ™~ - ——  Solution Curves
40 b ~_ 4o ]
3 S~ | hibw)=0
30 b ~ (b,w)=

FIG. 13. Solution curves for a=1/2 for several cases not con-
taining the origin. The curves are all started on the negative w axis.
Those starting at (b,w)=(0,—1) and (0,-2) bottom out, and drift
into the second quadrant similar to the curve in Fig. 12. But, the
solution curves starting at (0,-8/3), (0,-3), (0,-6), and (0,-30)
cross no curve of zeros of h(b,w) and proceed to infinity analyti-
cally in the third quadrant in accord with the x dependence in Theo-
rem 4. The arrow points to the straight line solution curve passing
through (0,-8/3), which is the boundary between curves of posi-
tive (above) and negative (below) grr.

unphysical. This forces us to make the phase transition by
jumping to the straight line solution curve.

Figure 14 shows —bxp as a function of —b,x, for the fluid
to solid phase transition. For —bx, <2.55, the density in-
creases; for larger —b x, it decreases. Remarkably, the point
—byx,=42.8, where the solution curve terminates on the type
1 singular curve, coincides to within error with the phase
transition point from computer simulations with a=4 [37].
However, there are other cases where the agreement is not
nearly as good, so perhaps this is just a coincidence.

10 T T ,

by xg /

——— ocurve-b 4 xg=-b x,

100

FIG. 14. Corresponding densities x, and xp for the fluid and
solid curves with a=1/2. For —b;x,<<2.55, the phase transition
corresponds to an increased density. The arrow marks the point
where the solution curve hits the type 1 singularity curve where
d»=0 in Eq. (43).
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FIG. 15. Solution curve for a=1/5 starting at (0,0). It encoun-
ters a type 1 singular curve in the third quadrant where d,=0 in Eq.
(43). But, there exist solution curves originating on the —w axis and
drifting off to infinity in accord with the x dependence in Theorem
4.

The results found in this section are representative of oth-
ers in the regime 0.3874<<a<<0.5275. At a=0.3874 the
curve of zero denominator of 4(b,w) shown in Fig. 12 inter-
sects the origin, which then becomes a type 5 singularity. For
smaller values of a, this curve passes through the third quad-
rant, changing the character of the solution curve. The next
subsection looks at such a case.

C. Repulsive potential energy u(r)=yr"1

Here, a=1/5 and k=-67/100. As shown in Fig. 15, the
solution curve starting at (0, 0) encounters a type 1 singular-
ity curve in the third quadrant, which is present for all
0<a<0.3874. Again, one may start curves on the negative
w axis which go smoothly to infinity in the third quadrant
according to the x dependence in Theorem 4. Such curves
included the analytic straight line curve considered above.
Thus to construct a solution correct at both low and high
densities again involves a phase transition. I tried several
values of a in the regime 0<a<<0.3874 and the behavior
was qualitatively like that with a=1/5.

As a—0, the type 1 singularity curve goes to negative
infinity in the third quadrant. This follows since the intersec-
tions of this curve with both the negative b and negative w
axes go to minus infinity. The type 1 singularity is thus re-
moved from the third quadrant as a— 0. We look at a=0 as
a special case in the next subsection.

D. Gas of hard spheres u(r)=yr"%, a—

Here, a=0 and k=-1. The interaction potential energy
between a pair of hard spheres, each with radius r, is
" wif r<r,, (74)
u(r) =
0if r>r,.

Write the power-law potential energy Eq. (17) as
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u(r) = y(’—) (75)

where y'=yr;“>0. Clearly, in the limit «— o0, with ' held
constant, the power-law potential energy acts like the hard
sphere potential energy.

For a=0, Egs. (24)-(26) become

x=p, (76)
3
= ENkBT, (77)
and
p=pkgI[1-b(p)]. (78)

Equation (41) yields

2b — 4b* +2b° —w = 3bw + 4b*w + 2bw2)

h(b,w):—( —-1+b

(79)

Clearly, there is no type 1 singular curve, other than the
irrelevant one b=1. This was expected from the previous
subsection.

The origin is a type 3 singular point and a series solution
for b(p) about p=0 yields

3 13
p= pkBT[l —(b1p) + E(bm)2 - g(blp)3

17

5
+§(b1p)4+ } (80)

which, with b; <0, shows monotonic growth of p/pkT with
increasing p.

As a—0, the limiting expression in Theorem 2’ has |b|
— and w/b— for any p in the asymptotic regime. This
suggests that the solution goes to infinity in the third quad-
rant, but with w diverging much faster than b. Assuming this,
Eq. (79) yields

h(b,w) — = 2w?, (81)

and Egs. (38) and (39) have asymptotic solution
1
b(t) — k+ 2 In(ty— 1), (82)

where k and ¢, are constants.

It is evident that b(r) —— as t—t,. Correspondingly, by
Egs. (24), (26), and (40), the pressure diverges at a finite
density:

1
=T exp(fo). (83)
1
Contrast this with a>0 where the pressure diverges only at
infinite density. Pressure divergence at a finite density is
physically expected for a gas of hard spheres. It is easy to
show from Eq, (82) that the divergence is logarithmic:
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FIG. 16. p/pkgT computed from the geometric equation versus
(po—p)/po- The linearity of the semilogarithmic graph as p— p,
demonstrates the logarithmic divergence of p/pkgT.

1 —
p _>_—1n(M). (84)
pkgT 2 Po

Physically, we expect
pO -~ (2}’5)_3, (85)

about the inverse volume of a sphere. For the hard sphere
potential energy, Eq. (55) leads to

2
) (86)
3
which yields
bipy~ 0.3. (87)

The full numerical solution to the geometric equation start-
ing at the origin results in

in reasonable agreement with the physical estimate. Figure
16 shows the numerically computed p/pkgT vs. (py—p)/ po.
It demonstrates a logarithmic divergence.

VIII. ATTRACTIVE INTERACTIONS

For attractive interactions y<<0, statistical mechanics of-
fers no thermodynamic limit. Neither of the integrals Egs.
(20) or (55) converge. But, the geometric theory is not tied to
any specific statistical mechanical model and has no integrals
obliged to diverge regardless of the thermodynamic state.
Assuming that there exists at least one stable state to serve as
an initial condition (say, an ideal gas state), we can integrate
the geometric equation to find other states. Divergences arise
only at singular points or phase transitions.

The case y<<0 corresponds to solutions of the geometric
equation with b; >0. There are two viewpoints to take con-
necting such solutions to reality. The first is that there is
some stable statistical mechanical model yielding the same
form of the equations of state Egs. (25) and (26) as used
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here, but with b(x) not connected to microscopic properties
by the integral in Eq. (20). It is hard to imagine what form
such a statistical mechanics might take since Eq. (20) is rea-
sonably general, but this possibility must at least be consid-
ered.

The second viewpoint is that the geometric theory for
b; >0 represents quasi-equilibrium states developing far
from the eventual collapsed equilibrium reached in a tradi-
tional statistical mechanical model. This was the viewpoint
taken with the gravity problem considered previously (a=1
and y<<0) [5,42]. There, the constant b, was started at 0
(corresponding to a random initial state) and then allowed to
increase slowly at constant p and 7, lowering the free energy
as structure forms. This process eventually led to a phase
transition, where we would expect the process of structure
formation to suffer a “critical slowing down” reflecting the
fact that it takes a long time to form structures corresponding
to singular thermodynamic functions.

The solution to this gravity problem was applied to galaxy
clustering, at a length scale where individual galaxies are
point particles interacting with each other via Newtonian
gravity. It was demonstrated that the phase transition point
corresponds closely to aspects of the observed galaxy distri-
bution [5].

The fact that the geometric theory produces solutions
even in cases where statistical mechanics cannot be applied
seems to be an advantage. But, I defer further consideration
of these interesting problems to future work.

PHYSICAL REVIEW E 72, 016120 (2005)
IX. CONCLUSION

In conclusion, I have investigated a class of systems
where the Riemannian geometric theory of thermodynamics
applies in the form of an ordinary differential equation. This
is the first systematic treatment of this theory in interacting
systems far from any critical point.

Attention was focused on repulsive power-law systems
with exponent @>3. A number of points of agreement were
found between the geometric theory and statistical mechan-
ics. Not yet entirely satisfactory is the issue of phase transi-
tions from the fluid state to the solid state. Although statisti-
cal mechanics offers no definite predictions here, comparison
with computer simulations is not convincing. More work is
needed.

Despite my attention to cases where a thermodynamic
limit exists, and a comparison with statistical mechanics is
possible, the geometric theory make predictions also in other
cases, including systems with attractive interactions. More
work is needed.
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